

 CPU scheduling - 1

6 CPU Scheduling

The Objective of Multiprogramming

Maximize CPU utilization (based on some

criteria)

CPU Scheduling

-- The selection process ～ CPU scheduler, i.e.,

short-term scheduler

-- Nonpreemptive scheduling

A running process keeps CPU until it volunteers to

release CPU

Adv. Easy to implement (at the cost of better

resource sharing)

＊ Adopted by Windows 3.1

-- Preemptive scheduling (強者暫停弱者)

CPU scheduling occurs whenever some process

become ready or the running process leaves

running state！

New

Ready

dispatched

Running

Waiting

Terminate

d

 CPU scheduling - 2

Issues involved：

-- Synchronization & protection of resources such

as I/O queues

＊ 何時需 Scheduling？

1. process need I/O

2. running ➔ ready ➔ timeout (time-sharing)

by interrupt

3. waiting state ➔ ready state (I/O完了) by

interrupt

4. process結束

情況 1, 4下，scheduling ➔ non-preemptive

scheduling；否則為 preemptive

-- Dispatcher (the module that gives control of the

CPU to the process selected by the

short-term scheduler)

Functionalities：

. Switch context

. Switching to user mode

. Restarting a user program

Dispatch Latency：(def.)

Stop a

process

Must be fast Star a

process

 CPU scheduling - 3

Process Scheduling

＊ Choose one of processes which are in the

ready state to be the running state.

＊ Considerations

(a) fairness.

(b) CPU utilization

(c) Throughput：the number of processes that are

completed per time unit.

(d) Turnaround time：the time the batch users must

wait for output.

(* for a particular process, we care about how long it

takes to execute that process; the interval from the

time of submission to the time of completion –

including the time waiting in memory, waiting in the

ready queue, executing on CPU, doing I/O *)

(e) Waiting time：for each process, the amount of

time that a process spends waiting in the ready

queue.

(f) Response time：in an active system, the time

from the submission of a request until the first

response is produced.

(* not the output *)

That is, the amount of time it takes to start

responding, but not the time it takes to output the

response.

 CPU scheduling - 4

EX. (round-robin; fixed time slot)

CPU utilization：9/12 = 0.75

Turnaround time：job 1, 12t

Waiting time：job1, 6t

Response time：

Throughput：(up to 12t) 1/12

 0 1 2 3 4 5 6 7 8 9 10 11 12

CPU

CPU

CPU I/O

CPU OK

Job1

Job2

Job3

MQ

MQ

If does not give up CPU

exit

 CPU scheduling - 5

Scheduling Criteria

Used to compare CPU scheduling algorithms！

＊ A CPU scheduling algorithm only has impacts on

the time of a process waiting for dispatching,

rather than its execution time on CPU！

1. CPU utilization ()

～ keep CPU as busy as possible！

2. Throughput ()

～maximize # of completing process / time unit

 Issues：long transactions vs short transactions

3. Turnaround time (針對某一個) ()

～minimize t

4. Wait time ()

～minimize the sum of time spent waiting in the

ready queue

5. Response time (in an interactive system) ()

～minimize t

Process

submitted

t
Process

completes

Process

submitted

t Process starts

responding

(含在 disk memory，在 ready queue，等 I/O..)

(從 output devices)

 CPU scheduling - 6

排班層次 (Scheduling level)

排班層次如下頁圖中所示，共分有：

1. high-level scheduling (或稱 long-term/job

scheduling)：此 scheduler決定哪些 job允許載入主

記憶體內以備執行，其特點有：

(1) 執行頻率較少。

(2) 需要花較多的執行時間以決定哪些 job可進入

主記憶體中。

(3) 決定 degree of multiprogramming。

(4) 必須精確地排班使得在主記憶體的 processes

性質是 CPU-bound與 I/O-bound的比例能平
均。

(5) 此排班程式通常是由 halt-state （即完成一個

process）所驅動執行的。

 CPU scheduling - 7

Jobs waiting

for entry

Jobs waiting

for initiation

Suspended

processes waiting

for activation

Active processes

Running

processes

Completed

High-level scheduling

Intermediate-level scheduling

Low-level scheduling

Job entry

Job initiation

Activate Suspend

Block or timer

runout

Dispatch

Complete

 CPU scheduling - 8

2. Intermediate-level scheduling (或稱 medium-term

scheduling)

為了改進 CPU與 I/O間的負載平衡，平均
CPU-bound與 I/O-bound程序的比例或由於某些因

素致使主記憶體中的 process被交換出 (swap out)

至磁碟上，或由磁碟上交換入(swap in) 至主記憶
體中，因此藉著暫時性的暫停 (suspending) 或啟

動 (activating) 程序以達上述目的。這些暫停與啟

動的排班工作即是由中程排班程式 (medium-term

scheduler) 所負責。

3. Low-level scheduling (或稱 short-term/process

scheduling)：

從主記憶體中等待執行的 processes選擇其中之一

以交由 CPU執行，此排班程式之特點如下：

(1) 執行頻率較多。

(2) 由於每執行一次 CPU控制權轉換一次，因此造
成使用者時間上的浪費，故 process scheduler

決定 CPU的使用效益。

(3) 為了減少 process scheduler的執行所花費的
overhead，故須減少 process scheduler的執行

時間。

 CPU scheduling - 9

排班佇列圖

圖 a為CPU排班的佇列圖，其中等待佇列 (ready

queue)內存由 job scheduler所選入的 processes以等

待 CPU的執行。而 process scheduler則從等待佇列
中選擇其中一個 process以供 CPU執行。若執行過程

中有 I/O需求時，則此 process會進入 I/O佇列 (I/O

queue)以等待 I/O的執行。圖 b為圖 a的簡化圖。若

加入中程排班 (即有 swap in與 swap out的功能)

時，則可如圖 c所示。圖 d圍等待佇列與 I/O佇列的結

構。

Ready Queue CPU

I/O

I/O

I/O

I/O Queue

I/O Queue

I/O Queue

．
．
．

．
．
．

圖 a CPU排班的佇列圖

Long-Term Short-Term

Ready Queue

I/O

CPU

I/O Waiting

Queue(s)

END

圖 b 簡化佇列圖

 CPU scheduling - 10

Ready Queue

I/O

CPU

I/O Waiting

Queues

END

圖 c 備有中程排班的佇列圖

Partially Executed

Swapped-Out Processes

Swap Out Swap

Head

Tail

Head

Tail

Head

Tail

Tail

Head

Tail

Head

．
．
．

Registers

．
．
．

Registers

Queue Header PCB #7 PCB #2

PCB #3 PCB #14 PCB #6

PCB #5

Ready

Queue

Mag Tape

Unit0

Mag Tape

Unit1

Disk

Unit0

Terminal

Unit0

．
．
．

圖 d 等待佇列與 I/O佇列的結構

 CPU scheduling - 11

 Scheduling Algorithms

(1) First-Come, First Served Scheduling (FCFS)

-- Non-preemptive

-- CPU might be hold for an extended period

Example1：

Process CPU Burst time

P1 24

P2 3

P3 3

 0 24 27 30

 0 3 6 30

Gantt Chart (甘蔗圖)

＊Average waiting time is highly affected by process

CPU burst times！

……………………

CPU

request

A FIFO ready queue

Dispatched

Average waiting

time = (0+24+27)/3

 = 17

Average waiting

time = (6+0+3)/3

 = 3

P1 P2 P3

P3 P2 P1

 CPU scheduling - 12

Classification

Preemptive vs. nonpreemptive (run-to-complete)

scheduling

- the average waiting time under a FCFS policy is

generally not minimal.

-

- Not good for time-sharing systems.

 0 3 6 30

因此 average turnaround time = (30+3+6)/3 = 13

故可知 FCFS排班法的效益和程序進入 ready queue

的順序有關。

Job2 Job3 Job1

 CPU scheduling - 13

Example2：Convoy Effect (島群)

A scenario：

＊ CPU utilization  (很不好)

Process set =

=

One CPU-bound process

Many I/O-bound process

CPU

Ready queue

I/O device

idle

Ready queue

All other processes wait for it to get off the CPU！！

 CPU scheduling - 14

(2) Shortest-Job-First Scheduling (SJF)

-- Nonpreemptive SJF

shortest next CPU burst first (而非 its total length)

Process CPU Burst time

P1 6

P2 8

P3 7

P4 3

 0 3 9 16 24

AWT = 1/4 * (3 + 9 + 16) = 28/4 = 7

(＊ compared to FCFS的 10.25 ＊)

＊ optimal in that it gives the minimum average

waiting time (When processes are all ready at

time ?!) (Batch System)

＊ Prediction of the next CPU burst time！(難處)

～exponential average

 SJF：常用於 long-term Scheduling

 不適用於 short-term CPU Scheduling

- Good for batch systems. (run time is known in

advance)

- But not good for interactive systems. (how do

we know the run time of all the processes in

advance？)

P4 P1 P3 P2

 CPU scheduling - 15

-- Preemptive SJF

shortest-remaining-time-first

Process CPU Burst time Arrival Time

P1 8 0

P2 4 1

P3 9 2

P4 5 3

 0 1 5 10 17 26

Average Waiting Time = ((10-1) + (1-1) + (17-2) + (5-3))/4 = 26/4

= 6.5

-- Preemptive or Nonpreemptive？

＊ criteria such as AWT (Average Waiting Time)

 0 10

 1 10 11

or

 0 11

 1 2

＊ context switching cost

～modeling & analysis

P1

1

P2 P4 P1 P3

time

Nonpreemptive

AWT = (0 + (10-1))/2

= 9/2

= 4.5

time

Preemptive AWT

= ((2-1) + 0)

= 0.5

 CPU scheduling - 16

若採用 preemptive SJF的排班法，則其 Gantt chart為

 0 1 5 10 17 26

其 average turnaround time （完成時間）

= ((17-0) + (5-1) + (26-2) + (10-3))/4 =52/4 = 13

但若採用 non-preemptive SJF的排班法，則其 Gantt

chart為

 0 8 12 17 26

其 average turnaround time

= ((8-0) + (12-1) + (17-2) + (26-3))/4

= 57/4

= 14.25

Job1 2 4 1 3

preemptive

Job1 2 3 4

 CPU scheduling - 17

(3) Priority Scheduling

A framework that always schedules the process

with the highest priority

Equal-priority, tie-breaking by FCFS → FCFS

priority

→ SJF

Avg. waiting time is 8.2.

process CPU Burst time Priority

P1 10 3

P2 1 1(highest)

P3 2 3

P4 1 4

P5 5 2

Gantt graph

 0 1 6 16 18 19

-- Priority Assignment

. internally defined – use some measurable quality

such as # as open files,

(time limits, memory requirement, the number of

open files, the ratio of average I/O..)

Next CPU burst length

1

P2 P5 P1 P3 P4

Average I/O Burst

Average CPU Burst

 CPU scheduling - 18

.externally defined – set by criteria external to the

O.S., such as the criticality of jobs

-- Preemptive or not？

. Preemptive scheduling –

CPU scheduling is invoked whenever a

process arrives at the ready queue, or the

running process relinquishes the CPU

.Nonpreemptive scheduling –

CPU scheduling is invoked only when the

running process relinquishes the CPU

-- Major problem

Indefinite blocking (starvation)

～ low priority process starves to death！

A solution：Aging

A technique that increases the priority of

processes waiting in the system for a long

time

 CPU scheduling - 19

(4) Round-Robin Scheduling (RR)

Similar to FCFS except that preemption is

added to switch between processes.

Goal：Fairness～for time sharing system

Process CPU Burst time

P1 24

P2 6

P3 3

 0 4 8 11 15 17 21 25 29 33

 AWT = ((7+2) + (4+7) + 8))/3 = 28/3 = 9.3

Average waiting time ➔ long

ready running

Interrupt every time

quantum (time slice)

FIFO ……

CPU
Ready queue

New process

The quantum is used up！

Time slice = 4

P1 P2

P3 P1 P2 P1 P1 P1 P1

1

 CPU scheduling - 20

-- Service size & interval

Time quantum：q

Service interval ≦ (N-1) * q if n processes are

ready & …

If q = ∞, RR → FCFS

If q = ↓0, RR → processor sharing

 # of context switching ↑

process quantum Context switch #

only approximated

0 10

12 0

6

6 1

0 10

1 9

➔ ➔ 1/11 of CPU is wasted！

-- Turnaround Time (與 time Q有關)

Process(10 ms) Quantum = 10 Quantum = 1

P1

P2

P3

Average Turnaround Time = (10+20+30)/3 = 20 ATT =

(28+29+30)/3 = 29

➔ 80% CPU burst < time slice

If context switching cost

Time quantum
= 10 %

10 1

10 20

10 20

20 30

0 10 20 30

0 10 20 30

0 10 20 30

 CPU scheduling - 21

- Good for time-sharing systems

- Preemptive

- The performance of the RR algorithm depends

on the size of the time quantum

- If the time quantum is very large (infinite) ➔

as FCFS.

(* cause poor response to short interactive

requests *)

- If it is very small ➔ called processor sharing

(* too many processes switches, lower CPU

efficiency *)

EX. Time quantum = 4

The average waiting time is 17/3 = 5.66

Process Burst Time

P1 24

P2 3

P3 3

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

B F D G A

Current

process

Next

process

(a)

F D G A B

(b)

 CPU scheduling - 22

 (5) Multilevel Queue Scheduling

Partition the ready queue into several separate

queues

➔ processes can be classified into different

groups and permanently assigned to one

queue

-- Intra-queue scheduling (互不相關)

Independent choice of scheduling algorithm

-- Inter-queue scheduling

a. Fixed-priority preemptive scheduling, e.g.,

foreground queues always have absolute

priorities over background queues.

b. Time slice between queue, e.g., 80% CPU to

give foreground processes and 20% CPU to

give to background processes (queues)

c. And more ?!!!

共(n+1) scheduling方法

…
…

…

Process Group 1

Process Group 2

Process Group n

各用各的scheduling方

法！！

Ex：

Foreground (interactive)；

background (batch)

 CPU scheduling - 23

- Processes are classified into different groups.

- Foreground (interactive), background (batch)

processes.

- Processes are permanently assigned to one

queue.

(* based on some priority *)

(* processes do not move between queues. *)

- Each queue has its own scheduling algorithm.

(N queues with (N+1) scheduling algorithms)

- There must be scheduling between the queues.

(* a fixed-priority preemptive scheduling *)

- Another possibility is to time slice between the

queues.

(* 80% CPU time；foreground queue with RR

algorithm *)

(* 20% CPU time；background queue with

FCFS *)

System processes

Interactive processes

Interactive editing processes

Batch processes

Student processes

highest priority

lowest priority

 CPU scheduling - 24

 (6) Multilevel Feedback Queue Scheduling

Different from Multilevel Queue Scheduling by

allowing processes to migrate among queues.

-- Parameters (configurable！)

a. # of queues

b. The scheduling algorithm for each queue

c. The method to determine when to upgrade

a process to a higher priority queue

d. The method to determine when to demote

a process to a lower priority queue

e. The method to determine which queue a

newly ready process will enter

＊ Inter-queue scheduling：Fixed-priority

preemptive ?!

Example

Quantum = 8

Quantum = 16

FCFS

＊ Idea：separate processes

with different CPU-burst

characteristics！

High priority

Low priority

 CPU scheduling - 25

- allow a process to move between queues.

- separate processes with different CPU-burst

characteristics.

- if a process uses too much CPU time => move

to a lower-priority queue.

- if a process waits too long in a lower-priority

queue => move to a higher-priority queue.

 CPU scheduling - 26

(7)Multiple-Processor-scheduling

(Load Balancing)

CPU scheduling in a system with multiple CPUs.

-- A homogeneous environment

processes are identical in terms of their

functionality

=> Can processes run on any processor？

Any libations if special peripheral devices exist

in certain nodes

-- A heterogeneous environment

processors must be compile to the compiled

codes of programs

-- Load sharing～load balancing！！

A common ready queue for a number of

processes

1. Self-scheduling～symmetric

multiprocessing

Need synchronization to access

common data structures, e.g.,

queues

2. Master-slave structure～asymmetric

multiprocessing

One processor as scheduler

=>

