6 CPU Scheduling

The Objective of Multiprogramming

Maximize CPU utilization (based on some
criteria)

CPU Scheduling

-- The selection process ~ CPU scheduler, i.e.,
short-term scheduler

-- Nonpreemptive scheduling
A running process keeps CPU until it volunteers to
release CPU
Adv. Easy to implement (at the cost of better
resource sharing)
* Adopted by Windows 3.1

-- Preemptive scheduling (’}5 T8 53 Jﬁ
CPU scheduling occurs whenever some process
become ready or the running process leaves
running state !

CPU scheduling - 1

[}

o

A=
=

Issues involved :
-- Synchronization & protection of resources such
as I/0 queues

* = pF % Scheduling ?
1. process need 1/O
2. running =» ready =>» timeout (time-sharing)
by interrupt
3. waiting state = ready state (1/O = 7) by
interrupt
4. process 2 &

% 1,4 7 > scheduling = non-preemptive
scheduling ; & B| 5 preemptive

-- Dispatcher (the module that gives control of the
CPU to the process selected by the
short-term scheduler)

Functionalities :

. Switch context

. Switching to user mode

. Restarting a user program

Dispatch Latency : (def.)

Stop a Must be fast Star a

process process

A
N

CPU scheduling - 2

[}

o

A=
=

Process Scheduling

* Choose one of processes which are in the
ready state to be the running state.

% Considerations
(a) fairness.
(b) CPU utilization

(c) Throughput : the number of processes that are
completed per time unit.

(d) Turnaround time : the time the batch users must
wait for output.

(* for a particular process, we care about how long it

takes to execute that process; the interval from the

time of submission to the time of completion —

including the time waiting in memory, waiting in the

ready queue, executing on CPU, doing I/O *)

(e) Waiting time : for each process, the amount of
time that a process spends waiting in the ready
qgueue.

() Response time : in an active system, the time
from the submission of a request until the first
response is produced.

(* not the output *)

That is, the amount of time it takes to start

responding, but not the time it takes to output the

response.

CPU scheduling - 3

EX. (round-robin; fixed time slot)

CPU utilization : 9/12 = 0.75
Turnaround time : job 1, 12t
Waiting time : jobl, 6t
Response time :

Throughput : (upto 12t) 1/12

Job3
4 If does not give up CPU
Job2 MO 10
ffféyf//// | | | | | W ox
0o 1 2 3 4 5 6 7 8 9 10 11 12

CPU scheduling - 4

[}

o

A=
=

Scheduling Criteria

Used to compare CPU scheduling algorithms |
* A CPU scheduling algorithm only has impacts on
the time of a process waiting for dispatching,
rather than its execution time on CPU !

1. CPU utilization (T)
~ keep CPU as busy as possible !

2. Throughput (T)
~maximize # of completing process / time unit
Issues : long transactions vs short transactions

3. Turnaround time (4*4+% - B) (1)

Process t
< > Process

submitted
completes

(&1f disk memory - 7f ready queue > Z 1/0..)
~minimize t

4. Wait time (4)
~minimize the sum of time spent waiting in the
ready queue

5. Response time (in an interactive system) (1)

Process) t Process starts

n

<

submitted " responding

(1% output devices)
~minimize t

CPU scheduling - 5

[}

-

=
=

#31k = (Scheduling level)
BIE 40T TE Y i 0 H A

1. high-level scheduling (& £ long-term/job
schedullng) ¢t scheduler - ¥R job wzF{s » 4
ERMP LT A
(1) %FW$@”°
(2) 2B FEHS DI FREF AT job T
YR i
(3) /4 Z_degree of multiprogramming -
(4) = FHrre 1t ¥ A3 2o B8 processes
1% &_CPU-bound £ I/O-bound 3t i) s T
359 .
(5) pt#rTfzid ¥ &4 halt-state (T - B
Process) #7Egds 3 (7 o

CPU scheduling - 6

[}

o

A=
=

Jobs waiting
for entry

Job entry

A\ 4

Jobs waiting

for initiation

Job initiation

A\ 4

Suspended
processes waiting

High-level scheduling

for activation

y

A
Activate Suspend

Block or timer

runout

A 4

Intermediate-level scheduling

Active processes

y

A
Dispatch

A 4

Running

Low-level scheduling

processes

Complete

A 4

Completed

CPU scheduling - 7

2. Intermediate-level scheduling (£ # medium-term
scheduling)
57 2% CPU & I/0 B ehf % 7> T35
CPU-bound £ 1/O-bound #2 & et G| g d 3 bt F]
2R 2B chprocessa R # 4 (swap out)
IRA > Nd BE 2~ (swapin) I 4R
e o Fp %’g%’%‘r%ﬁﬁﬂ%‘rﬁ% (suspending) & £z
¥ (activating) &5 4:E F it P oo o ipdt B7in 29 kL
e FT 1 (T d ¢ BRI N (medium-term
scheduler) #7§ #

3. Low-level scheduling (# f short-term/process
scheduling) :
KA et & FH Faprocesses EHH P 2 -
e d CPU LT » gt 574850 2 Bhde™

(1) FEHEFRS -
(2) d *»EF - = CPUHIERE R - =0 » 7]
% *E PR GuLE o s process scheduler
T CPU g * 22z o
3) =R process scheduler 3% {7 7 7= 7 7
overhead’ # /f 5 ** process scheduler =% {7
P o

CPU scheduling - 8

o]

[ez] —
| =
wo [2

HEET I E

®la s CPU#sIchizs R 2 ¢ % F =7 (ready
queue)p 3¢ job scheduler #1i% » s processes 4 %
& CPU en#, 1= - m process scheduler p|j& % & i= 5|
FEH Y — B process i CPU (7 - 2R 742
® 3 /0 7 FpF > Rl process ¢ &~ 1/O =7 (1/O
queue)L EF /O 7 - B b s Baadii-B %
deo P fREEFT (5 swap in & swap out e9F i)
FF o R T AeBl ¢ Ao o Bl d B E & w22 1/0 w5 ek

e
Ready Queue @

A

/0 Queve |
/0 Queve |4
1/0 Queue |

a CPU FEtAvT5IE

Long-Term Short-Term

\ 4 o
Ready Queue | CPU

I/O Waiting
Queue(s)
B b EHEFIE

CPU scheduling - 9

\A 4

END

=

[o]
=

—
75

=<1
75
=

Swap Partially Executed Swap Out
Swapped-Out Processes «
J END
> eady Queue » cpu
I/O Waiting
Queues [*
¢ HETEFNTYE
Queue Header PCB #7 PCB #2
Ready Head > > 1
Queue Tail | Registers Registers -
Mag Tape] Head T
Unit0 Tail T/
Mag Tape Head 1
Unitl Tail ——_|_' PCB #3 PCB #14 PCB #6
> > I
Disk Head ’/
PCB #5
Terminal| Head > 1
Unit0 Tail > -

B d FRHTYIER /O {73RysERE

CPU scheduling - 10

[}

o -

A=
=

Scheduling Algorithms

(1) First-Come, First Served Scheduling (FCFS)

Dispatched

—> >

CPU A FIFO ready queue
request

-- Non-preemptive
-- CPU might be hold for an extended period

Examplel :
Process CPU Burst time
P1 24
P2
P3
Average waiting
P1 P2 | P3)
time = (0+24+27)/3
0 24 27 30 =17
Average waiting
P2 | P3 P1 .
time = (6+0+3)/3

0 3 6 30 -3
Gantt Chart (4 & B)

* Average waiting time is highly affected by process
CPU burst times !

CPU scheduling - 11

Classification

Preemptive vs. nonpreemptive (run-to-complete)
scheduling

- the average waiting time under a FCFS policy is
generally not minimal.

- Not good for time-sharing systems.

Job2 Job3 Jobl

0 3 6 30
]t average turnaround time = (30+3+6)/3 = 13

¥ v FCFS $31j# dwi ¥ friz A i€ ~ ready queue
E’j’"]hlﬁ‘ﬁg "ﬁ Fﬁg o

CPU scheduling - 12

Example2 : Convoy Effect (& #¥)

Process set = < One CPU-bound process —
Many I/O-bound process —

A scenario :

CPU I/0O device
idle

A
A
A
A
A
A
A
A
A
A

Ready queue

_—
—
o
—
—
—
o
el
— —
_— -
— —
-— —
-— -—
— —
o o
— -~

— o
_— -
— —
— —
-— -—
— —
-~ il .

— o
_— -
— —
— —
— —
— —

o o

o

—
-~ o
— —
-~ o
—
—

— o
_— -
— —
o —
—
—
o

—
—
—

A
A
A
A
A
A
A
A
A
7 N

Ready queue

All other processes wait for it to get off the CPU | |

% CPU utilization { (fR&)

CPU scheduling - 13

[}

o

A=
=

(2) Shortest-Job-First Scheduling (SJF)

-- Nonpreemptive SJF
shortest next CPU burst first (@ 2t its total length)

Process CPU Burst time

P1 6
P2 8
P3 7
P4 3
P4 P1 P3 P2
0 3 9 16 24

AWT =1/4*(3+9+16)=28/4=7
(*x compared to FCFS 17 10.25)

* optimal in that it gives the minimum average
waiting time (When processes are all ready at
time ?!) (Batch System)

* Prediction of the next CPU burst time | (¥ /)
~exponential average

SJF : ¥ * 3% long-term Scheduling
% it * *t short-term CPU Scheduling

- Good for batch systems. (run time is known in
advance)

- But not good for interactive systems. (how do
we know the run time of all the processes in
advance ?)

CPU scheduling - 14

[}

o

A=
=

-- Preemptive SJF
shortest-remaining-time-first

Process CPU Burst time Arrival Time
P1 8
P2 4 1
P3 9 2
P4 5 3
P1 P2 P4 P1 P3
0 1 5 10 17 26

Average Waiting Time = ((10-1)+ (1-1)+(17-2) + (5-3))/4 = 26/4
=6.5

-- Preemptive or Nonpreemptive ?
* criteria such as AWT (Average Waiting Time)

3

Nonpreemptive
AWT = (0 + (10-1))/2

0 10 =9/2
I — time =45
1 10 11
or
A
Preemptive AWT
=((2-1)+0)
0 11 =0.5
A .
, time
1 2

% context switching cost
~modeling & analysis

CPU scheduling - 15

[}

o -

A=
=

¥ 4% preemptive SJF itz > p|H Gantt chart 2

preemptive

Jobl

4

0 1

5

10 17 26

H average turnaround time (% & pFfF)
=((17-0) + (5-1) + (26-2) + (10-3))/4 =52/4 = 13

e & # * non-preemptive SJF gt rrix > p|H Gantt

chart %

Jobl

0

8

12

17 26

CPU scheduling - 16

(3) Priority Scheduling

A framework that always schedules the process
with the highest priority

Equal-priority, tie-breaking by FCFS - FCFS

priority
1
Next CPU burst length > SJF
Avg. waiting time is 8.2.
process CPU Burst time Priority
P1 10 3
P2 1 1(highest)
P3 2 3
P4 1 4
P5 5 2
Gantt graph
P2 P5 P1 P3 P4
0 1 6 16 18 19

-- Priority Assignment
. internally defined — use some measurable quality
such as # as open files, Average I/O Burst

Average CPU Burst

(time limits, memory requirement, the number of
open files, the ratio of average 1/0..)

CPU scheduling - 17

.externally defined — set by criteria external to the
O.S., such as the criticality of jobs

-- Preemptive or not ¢
. Preemptive scheduling —
CPU scheduling is invoked whenever a
process arrives at the ready queue, or the
running process relinquishes the CPU

.Nonpreemptive scheduling —
CPU scheduling is invoked only when the
running process relinquishes the CPU

-- Major problem
Indefinite blocking (starvation)
~ low priority process starves to death !

A solution : Aging
A technique that increases the priority of
processes waiting in the system for a long
time

CPU scheduling - 18

(4) Round-Robin Scheduling (RR)

Similar to FCFS except that preemption is
added to switch between processes.

Interrupt every time
guantum (time slice)

Goal : Fairness~for time sharing system

Ready queue
CPU New process

|

4
L
M
®)
A

The quantum is used up !

Process CPU Burst time

P1 24 Time slice =4
P2 6
P3 3

P1|P2 |P3|P1|P2|P1|P1|P1]|P1

0O 4 8 11 15 17 21 25 29 33

AWT = ((7+2) + (4+7) +8))/3=28/3=9.3

Average waiting time = long

CPU scheduling - 19

=

B

-- Service size & interval

Time quantum :

Service interval = (N-1)* g if n processes are
ready & ...

[o]

If = oo, RR 2> FCFS
If g= | 0, RR - processor sharing
of context switching 1

process quantum Context switch #
only approximated
12 0
0 10
6 1
6
I e e 1 o
0 10

If context switching cost

=10 %
Time quantum

> | 10 | 1| = 1/11 of CPU is wasted !

-- Turnaround Time (£ time Q 3 B)

Process(10 ms) Quantum =10 Quantum =1
10 20 0 10 20 30
"2 Rt |
o3 10 20 0 10 20 30
20_|3O 0 10 20 30

Average Turnaround Time = (10+20+30)/3=20 ATT =
(28+29+30)/3 = 29
=> 80% CPU burst < time slice

CPU scheduling - 20

[}

o

A=
e

Good for time-sharing systems
- Preemptive

- The performance of the RR algorithm depends

on the size of the time quantum

- If the time quantum is very large (infinite) =»

as FCFS.

(* cause poor response to short interactive

requests *)

- Ifitis very small = called processor sharing

(* too many processes switches, lower CPU

efficiency *)

EX. Time quantum =4

The average waiting time is 17/3 = 5.66

Process Burst Time
P1 24
P2 3
P3 3
P1 P2 P3 P1 P1 P1 P1 P1
0 4 7 10 14 18 22 26 30
Current Next
process process
B F D G A
(a)
F D G A B

(b)

CPU scheduling - 21

(5) Multilevel Queue Scheduling

Partition the ready queue into several separate

queues

=» processes can be classified into different
groups and permanently assigned to one

queue
Ex:
— Process Group 1 —_— Foreground (interactive) ;
background (batch)
— Process Group 2 —
% F %) scheduling 75
T E
— Process Group n —_

-- Intra-queue scheduling (= % 4p)
Independent choice of scheduling algorithm

-- Inter-queue scheduling

a. Fixed-priority preemptive scheduling, e.g.,
foreground queues always have absolute
priorities over background queues.

b. Time slice between queue, e.g., 80% CPU to
give foreground processes and 20% CPU to
give to background processes (queues)

c. And more ?!!!

% (n+1) scheduling =

CPU scheduling - 22

[}

o

A=
=

Processes are classified into different groups.
Foreground (interactive), background (batch)
processes.

Processes are permanently assigned to one
queue.

(* based on some priority *)

(* processes do not move between queues. *)

Each queue has its own scheduling algorithm.

(N queues with (N+1) scheduling algorithms)
There must be scheduling between the queues.
(* a fixed-priority preemptive scheduling *)
Another possibility is to time slice between the
queues.

(* 80% CPU time ; foreground queue with RR
algorithm *)

(* 20% CPU time ; background queue with
FCFS %)

highest priority

— System processes —
— Interactive processes —
— | Interactive editing processes [
— Batch processes —
— Student processes —

lowest priority

CPU scheduling - 23

(6) Multilevel Feedback Queue Scheduling

Different from Multilevel Queue Scheduling by
allowing processes to migrate among queues.

-- Parameters (configurable !)

a. # of queues

b. The scheduling algorithm for each queue

c. The method to determine when to upgrade
a process to a higher priority queue

d. The method to determine when to demote
a process to a lower priority queue

e. The method to determine which queue a
newly ready process will enter

* Inter-queue scheduling : Fixed-priority
preemptive ?!

Example
High priority
’ Quantum =8 >
I Low priority
g Quantum =16
> FCFS >

% Idea : separate processes

with different CPU-burst
characteristics !

CPU scheduling - 24

[}

o

A=
=

allow a process to move between queues.
separate processes with different CPU-burst
characteristics.

if a process uses too much CPU time => move
to a lower-priority queue.

If a process waits too long in a lower-priority
gueue => move to a higher-priority queue.

CPU scheduling - 25

(7)Multiple-Processor-scheduling
(Load Balancing)
CPU scheduling in a system with multiple CPUs.

-- A homogeneous environment
processes are identical in terms of their
functionality
=> Can processes run on any processor ?
Any libations if special peripheral devices exist
in certain nodes

-- A heterogeneous environment
processors must be compile to the compiled
codes of programs

-- Load sharing~Iload balancing ! !
A common ready queue for a number of
processes
1. Self-scheduling~symmetric
multiprocessing
Need synchronization to access
common data structures, e.g.,
queues
2. Master-slave structure~asymmetric
multiprocessing
One processor as scheduler

CPU scheduling - 26

